Telesismic delay times

We measured delay times of teleseismic S waves recorded on the transceiver channel. Only echoes in changes in velocity are allowed on.

We measured delay times from stations on and off shore together, but only event data from the GCMT catalog.

We use 3.50 delay times from on-off data with equal distances ranging from 30 to 100 degrees. We correct an average of 16 measurements per event.

We solve the forward problem by ray tracing through a 3-D earth model. The X-ray technique is used to approximate the 3-D earth model during the wave travel.

We arrive at the final model by the data at 30 to 100 degrees.

We correct the origin time of the delay times with event status, but do not calculate station statics. Departure is explicitly accounted for in the forward problem.

Tomography

Non-linear optimization of a tomographic inversion of teleseismic S waves recorded on the transceiver channel. The seismic rays are traced through the Earth model with the assumption that the seismic wave velocity is known for each point in the model.

We use a 3-D velocity model derived from a global tomographic study. We use a 3-D velocity model derived from a global tomographic study.

The velocity model is a 3-D grid of seismic wave velocities estimated from teleseismic S waves.

Resolution of model parameters

Below are the following equations for the resolution of parameter values at different locations, and the vertical extent of features.

Teleseismic data

We use teleseismic data from the Pacific Ocean to study the structure of the Earth. The data is recorded on land and on ships in the ocean.

We use teleseismic data from the Pacific Ocean to study the structure of the Earth. The data is recorded on land and on ships in the ocean.

We use teleseismic data from the Pacific Ocean to study the structure of the Earth. The data is recorded on land and on ships in the ocean.

Comparison with models of mantle upwelling at ridge-transform intersections

We compare the results of our study with models of mantle upwelling at ridge-transform intersections. The models are based on tomographic studies of the Earth.

Future Directions

- So far, only data from years 1 and 2 of the Cascadia Initiative, Neptune Canada, and the Blanca Transform OBS experiment have been analyzed. We plan to include data from years 3 and 4 of the Cascadia Initiative as well as the Gorda experiment.

References

